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Cationic bent metallocene derivatives of the early transition
and lanthanide metals are finding important uses as homoge-
neous catalysts for olefin polymerization.1 Intense research
efforts have centered on the design and syntheses of sterically
modified metallocenes, some of which are highly stereoselective
catalysts. Much less attention has been directed at the electronic
modification of the catalytically active site by the substitution
of heterocyclic ligands in place of cyclopentadienide (Cp,1).2
Recently, the Bercaw3 and Bazan4 groups have prepared several
early transition metal complexes of the dianionic (diisopropyl-
amino)borollide (2). These complexes are capable of heterolytic
bond activation and are more reactive toward certain substrates
than their isoelectronic cyclopentadienide analogs. Thus,
exploration of the chemistry of the early transition metal com-
plexes of the corresponding monoanionic boratabenzene5,6 (3)
seems attractive. Surprisingly, the extensive prior work on
boratabenzenes includes only complexes with later transition
metals.7 We report here on the synthesis of zirconium (diiso-
propylamino)borabenzene complexes and on their use in olefin
polymerization.

The reaction of 1-(N,N-diisopropylamino)boracyclohexa-2,5-
diene (4) or its conjugated isomer5 with 1 equiv of LDA in
ether produces the corresponding boratabenzene lithium3.8
Subsequent reaction of3with Cp*ZrCl3 (Cp* ) C5Me5) in ether

affords, after pentane extraction, 61% of a yellow air-sensitive
solid, which by 1H, 11B, and 13C NMR spectroscopy, high-
resolution mass spectroscopy, and elemental analysis is con-
sistent with formulation as Cp*[C5H5BN(i-Pr)2]ZrCl2 (6, Scheme
1). In the same manner, the reaction of 2 equiv of3with ZrCl4
affords red crystals of [C5H5BN(i-Pr)2]2ZrCl2 (7) in 57% yield.
Slow recrystallization from pentane gave crystals suitable for
X-ray diffraction.9

The molecular structure of7, illustrated in Figure 1, generally
resembles that of a bent metallocene. There is a crystallo-
graphically imposedC2 axis bisecting the ClZrCl* angle, while
the N(i-Pr)2 groups are rotated to the side, pointing away from
the metallocene wedge. The Zr is slip-distorted toward C(3)
away from B so that the B-Zr distance (2.98 Å) is too long
for effective bonding. Inspection of Zr-C distances (i.e., Zr-
C(1)) 2.693(5) Å; Zr-C(2)) 2.563(5) Å; Zr-C(3)) 2.483-
(5) Å) reveals increasing interaction further from B, to a point
that the ligand adopts a slight chair-like geometry (see inset of
Figure 1). Therefore, each boratabenzene ligand is onlyη5-
coordinated through the pentadienyl fragment of the ring in a
manner similar to that of open metallocenes.10 The very short
distance between the boron and the sp2-hybridized nitrogen
(1.396(6) Å) shows that the B-N π-bonding is strong.11 The
combined effect of these structural features is that resonance
contribution7A dominates the electronic structure of7.
Strong B-N π-bonding is independently indicated by the high

rotational barrier about the B-N bond. The slow B-N rotation
at 25°C makes pairs ofi-Pr methyl groups diastereotopic. On
heating7 in C6D6 to 62 °C, the 13C NMR signals (δ 23.56,
23.497 ppm) coalesce, indicating a barrier to B-N rotation of
∆Gq ) 18.2( 0.5 kcal/mol.12 Although there are no structural
data for6, the identical B-N rotation barrier (∆Gq ) 17.7(
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Scheme 1a

a (a) Cp*ZrCl3; (b) ZrCl4; (c) CH3Li; (d) CD2Cl2/hν; (e) HNMe3Cl.
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0.5 kcal/mol) and near identical11B NMR chemical shift to that
of 7 suggest the same coordination of its boratabenzene moiety.
We note here that all structurally characterized late transition
metal-boratabenzene complexes areη6-coordinated, even though
metal bonding is consistently weaker to boron than to carbon.7b,13

We suggest that the distortion towardη5-binding in6 and7 is
due to the high electron demand of Zr(IV), which prefers
coordination to the more electron rich carbons. The steric
consequence of this electronic preference is to confine the boron
with its large pendant group to the open entrance of the
metallocene wedge.
Alkylation of zirconium proceeds without complications.

Adding 2 equiv of methyllithium to7 in ether affords 83% of
[C5H5BN(i-Pr)2]2ZrMe2 (8) as a yellow oil, which slowly
crystallized on standing. Photolysis of8 in CD2Cl2 initially
gives the monomethyl chloride9, which is ultimately converted
to7upon further irradiation. Trimethylammonium chloride with
8 in CH2Cl2 also provides9 along with methane and the
boracyclohexadienes4 and5. The latter two products appear
to derive from ring protonation followed by decomplexation.
The unsymmetrical9 is recognizable from its first-order1H
NMR spectrum, which shows signals for five nonequivalent
boratabenzene ring protons. Reaction of9 with methyllithium
regenerates8.
Addition of a large excess of methylaluminoxane (MAO)14

to 6 and7 results in a color change to red for6 and to intense

magenta in the case of7. These solutions polymerize ethylene
(1 atm and 23°C) with activities of 52 kg of PE/(h [Zr] mol)
for 6 and 105 kg of PE/(h [Zr] mol) for7.15 Since reactivity in
these reactions is sensitive to a variety of interrelated variables
such as monomer quality and pressure, reaction temperature,
MAO quality, etc., we standardized our protocol using Cp2-
ZrCl2, obtaining an activity of 90 kg of PE/(h [Zr] mol). It is
most likely that MAO serves its standard role, namely, methy-
lation at zirconium followed by methyl anion abstraction and
generation of a highly electrophilic zirconium cation.
In summary, boratabenzene zirconium(IV) derivatives analo-

gous to Cp2ZrCl2 are easily prepared and undergo similar
functional group manipulation. The pronounced structural
deviation to open pentadienyl-like bonding observed in7 is
likely to be a general feature, especially for situations where
the metal is in its highest oxidation state and a strongπ donor
is attached to boron. The observation that6 and7 have similar
polymerization activities to Cp2ZrCl2 is highly significant.
Existing synthetic methodology allows preparation of both
C-substituted boratabenzene13,16 and boratabenzenes in which
B is substituted with different donor character.17 Therefore,
boratabenzene analogs of sterically constrained, more catalyti-
cally active metallocenes should be readily obtainable. More-
over, boron interacts strongly with its exocyclic substituents,18

implying that electron density and consequent reactivity at the
metal center could be modulated in a manner not readily
achievable using cyclopentadienide ligands. We believe that
novel electrophilic boratabenzene-early transition metal com-
plexes will find innovative applications that complement the
function of cyclopentadienide-based reagents.
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Figure 1. ORTEP view of7, showing the atom-numbering scheme.
Hydrogen atoms were omitted for clarity. Selected bond distances
(Å): Zr-C(4), 2.582(4); Zr-C(5), 2.649(4); N-B, 1.396(6); C(1)-
B, 1.549(7); C(5)-B, 1.554(6). The inset shows a profile view of one
of the rings juxtaposed to the Zr.
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